Технология пассивации – это одно из современных средств, помогающих бороться с коррозией. О необходимости такой защиты знают все, кому приходится работать со стальными деталями и металлоконструкциями.

Намного проще сразу защитить от ржавения, чем бороться с последствиями или искать замену для окончательного испорченного и вышедшего из строя изделия.

В этой статье расскажем о методе подробнее – затронем область применения технологии, условия пассивации, этапы, виды обрабатываемых материалов. Это позволит вам получить четкое представление о том, на что способен процесс и где его применяют.

Что такое пассивация

Так называют процесс, направленный на появление на поверхности металлического изделия оксидной пленки.

В основе технологии лежит представление о том, что металл начинает портиться из-за постоянного контакта с агрессивными средами, в том числе, с водой и воздухом.

Когда пленка образуется и закрепляется на металле, химическая активность сырья становится намного меньше. Важно понимать, что использование процесса напрямую связано с разрушением верхнего слоя материала.

Но затрагивается минимум поверхности, всего несколько нанометров. Коррозия, появившаяся при контакте с другими металлами или агрессивными средами, не распространяется глубже. Это помогает не допустить потери прочности и постепенного разрушения.

Так как при пассивации происходит химическая реакция, важно правильно подобрать окислитель, а также учитывать, какие металлы подойдут для такой обработки, а какие нет. Обо всем этом расскажем далее.

Как проходит процедура

При проведении процедуры важно следить за соблюдением алгоритма процесса.

Пассивацию разделяют на 4 этапа:

  • Подготовка. Необходима для того, чтобы окислитель вступил в реакцию со сплавом. Наносить состав можно только после того, как поверхность подготовлена. Деталь промывают и обезжиривают. Не должно быть следов краски, растворителей и других посторонних химических веществ, которые могли бы повлиять на реакцию. Также допускается проведение ошкуривания, при котором зачищаются мелкие неровности. После просушки и осмотра металлического изделия, приступают ко следующему этапу.
  • Нанесение окислителя. В работе используются различные типы реагентов, создающие на изделии защитную пленку. В ее составе преобладают продукты окисления и соль – это безопасно для материала, но сами защитные показатели увеличиваются в разы. Степень эффективности пассивации будет зависеть от того, внимательно ли специалисты подошли к процессу и какие составы они использовали. Учитывается рецептура раствора, тип сплава. В промышленности при проведении пассивации хорошо показывают себя стали высоколегированного типа, в том числе, хромникилевые. С углеродистыми разновидностями сложнее – защитная пленка хоть и образуется на них, но держится меньше.
  • Зачистка поверхности. Выполняется стандартная промывка для того, чтобы удалить с изделия задержавшиеся на его поверхности соли.
  • Нейтрализация окислов. Выполняется с использованием двух или трехпроцентного раствора аммиака. Также в него входит гидроксид натрия, олеиновая кислота. Обработка занимает не более трех минут. Процедура требует поддержания фиксированного нагрева среды до температуры в 90 градусов.

Эффект пассивации станет заметен быстро. На поверхности изделия появляется окисленный слой с характерным цветом. Есть стали, которые со временем начинают темнеть, есть также те, для которых удается удержать определенный оттенок.

Особенности используемых в процессе растворов

Как мы уже отметили выше, при пассивации происходит химическая реакция. Это значит, что специалисту нужно знать, с каким сплавом и раствором он работает.

В таблице ниже мы распишем особенности растворов и типы сталей, с которыми они работают:

Раствор

Тип сплава

Серная и азотная кислота.

Коррозийностойкие высоколегированные сплавы.

Азотная кислота, двухромовокислый калий.

Ферритные сплавы.

Фосфорная кислота, хромовый ангидрид.

Среднелегированная сталь.

Гидроксид натрия, хромовый ангидрид, двухромовокислый калий.

Углеродистые стали.

Класс сплава также влияет на используемые в работе температуры и длительность процесса. Стандартный диапазон нагрева при обработке составляет от 18 до 90 градусов. Короткие процессы занимают около трех минут, но на сложные задачи может потребоваться и до часа.

Скорость протекания процесса также связана с температурой.

Виды процедуры

Выше мы рассмотрели, какие металлы пассивация делает более устойчивыми к коррозии. Теперь стоит определиться с видом процесса, который используют.

Выделяют два основных вида процедуры:

  • Электрохимическая. В этом случае на металл наносятся как электролиты, так и соли, а также кислые растворы. При таком процессе, удается сформировать на поверхности заряженные частицы и добиться их постепенного оседания. Если процесс проведен правильно, то на материале возникнет ровная и стойкая защитная пленка. В процессе используется ток.
  • Химическая. В таком случае используются специальные химические реагенты. В их составе такие элементы, как никель и хром. Само нанесение проводится методом напыления, либо при окунании в заполненную раствором емкость. Преимущество такого подхода заключается в том, что сам металл становится тверже. Электролит подогревается.

Особенности обработки разных типов материалов

Рассмотрим примеры пассивации при использовании распространенных металлов.

Среди них такие, как:

  • Сталь. Пассивация стали активно применяется в производстве. Использование такого подхода связано с необходимостью тщательного обезжиривания поверхности. Доказано, что технология помогает увеличить максимальную длительность использования материала, его защищенность от внешних агрессивных факторов.
  • Медь. В работе применяются растворы хрома. На меди не так просто создать пленку высокой плотности, но именно такие растворы помогают сделать это. При этом сам защитный слой прочный и не стирается.
  • Цинк. Получает все большее распространение в последнее время. Обычно изделия из цинка тонкие, потому важно чтобы пленка не была слишком толстой. Процесс окисления затрагивает поверхностный участок. Благодаря этому сохраняются все характеристики изделия.
  • Железо. При использовании железа, есть большой риск появления коррозии. Стандартное пассивирующее средство – это раствор серной кислоты. Он способствует образованию тонкой пленки, позволяет применять железные детали на открытом воздухе с гарантией высокого уровня защиты.

Области применения технологии

Использование метода зарекомендовало себя в следующих случаях:

  • Окраска. На созданный защитный слой могут легко наноситься полимерные составы. Таким образом, удается достичь не только повышенной устойчивости к коррозии, но и обезжиривания.
  • Создание паровых турбин и других изделий, контактирующих с нагретым до высоких температур паром. В таком случае возможна обработка нержавеющей стали. Причина в том, что это добавляет прочности даже если с агрессивными средами нужно контактировать постоянно. Особенно хорошо это работает на примере защиты самой уязвимой части конструкции – сварных швов.
  • Требуется защитить от коррозии стоматологические изделия. Пассивация применяется в промышленности при создании двухкомпонентных имплантов. Так обрабатывают специальные опорные части имплантов, штифты, на которые ставится коронка. Мера гарантирует, что находясь в челюсти пациента, основание не будет постепенно разрушаться.
  • Декорирование. Благодаря созданию особой пленки на изделии, его удается не только защитить от ржавения, но и сделать красивее. Причина – в цвете поверхностного слоя и его приятных радужных переливах.

Технология широко распространена и со временем становится только более востребованной. Это далеко не все примеры ее применения в промышленности.

Наша компания также готова предложить и еще один метод защиты от коррозии – оцинковку изделий на качественном оборудовании.

Все что нужно – обратиться к нам по телефону или оставить заявку на сайте.

Вернуться к статьям
Поделиться статьей